Archive for April, 2016

Complicated Urinary Tract Infections: What’s a Lab To Do?

Journal of Clinical Microbiology May 2016 V.54 N.5 P.1189-1190

Stephen M. Brecher

aDepartment of Pathology and Laboratory Medicine, VA Boston HealthCare System, West Roxbury, Massachusetts, USA

bDepartment of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA

The article by Price et al. in this issue (T. K. Price et al., J Clin Microbiol 54:1216–1222, 2016, http://dx.doi.org/10.1128/JCM.00044-16) advocates for the use of a larger inoculum when culturing urine obtained by “in-and-out” catheterization in a selected female population.

Their findings and the resulting challenges will afford clinical microbiologists and specialty physicians an opportunity to review what will or should be done with the additional microbiological culture data.

PDF

http://jcm.asm.org/content/54/5/1189.full.pdf

Advertisements

April 29, 2016 at 2:38 pm

Rethinking the Definition of Success in the Management of a Periprosthetic Joint Infection

The Journal of Bone & Joint Surgery SEPT.16, 2015 V.97 N.18 e64

Commentary on an article by Miguel M. Gomez, MD, et al.: “The Fate of Spacers in the Treatment of Periprosthetic Joint Infection”

 

In the article “The Fate of Spacers in the Management of Periprosthetic Joint Infection,” Gomez et al. raise two important questions with regard to the treatment of periprosthetic joint infection: What occurs with the patient during the interim between staged surgical treatments; and what occurs with the patient who does not undergo the subsequent stage of treatment?

This information is valuable as most reports on the outcome of a two-stage treatment for periprosthetic joint infection, in which infection eradication is attained in 85% to 90% of patients, have focused on showing results only for patients who completed the second stage. From their findings, Gomez et al. suggest that this may overestimate the rate of infection eradication, as some of these treated patients may have a subsequent infection. Equally importantly, the point is made that there are other possible outcomes after the index removal of the implant (failure to proceed with the second stage, surgical treatment other than reimplantation, amputation, fusion, resection arthroplasty, spacer retention, and death) that need to be described. The combination of reporting the success of the two-stage treatment and reporting the failures as defined above yields a much fuller picture of the impact of a periprosthetic joint infection. The authors are to be commended for asking and attempting to answer questions of great clinical import and in expanding the criteria for what defines a successful outcome….

 

abstract

http://jbjs.org/content/97/18/e64

 

PDF

http://jbjs.org/content/jbjsam/97/18/e64.full.pdf

April 29, 2016 at 2:37 pm

Implementing an Antibiotic Stewardship Program – Guidelines by the IDSA and the SHEA

Clinical Infectious Diseases May 15, 2016 V.62 N.10 e51-e77

Tamar F. Barlam, Sara E. Cosgrove, Lilian M. Abbo, Conan MacDougall, Audrey N. Schuetz, Edward J. Septimus, Arjun Srinivasan, Timothy H. Dellit, Yngve T. Falck-Ytter, Neil O. Fishman, Cindy W. Hamilton, Timothy C. Jenkins, Pamela A. Lipsett, Preeti N. Malani, Larissa S. May, Gregory J. Moran, Melinda M. Neuhauser, Jason G. Newland, Christopher A. Ohl, Matthew H. Samore, Susan K. Seo, and Kavita K. Trivedi

1Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts

2Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland

3Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida

4Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco

5Department of Medicine, Weill Cornell Medical Center/New York–Presbyterian Hospital, New York, New York

6Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Houston

7Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia

8Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle

9Department of Medicine, Case Western Reserve University and Veterans Affairs Medical Center, Cleveland, Ohio

10Department of Medicine, University of Pennsylvania Health System, Philadelphia

11Hamilton House, Virginia Beach, Virginia

12Division of Infectious Diseases, Denver Health, Denver, Colorado

13Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University Schools of Medicine and Nursing, Baltimore, Maryland

14Division of Infectious Diseases, University of Michigan Health System, Ann Arbor

15Department of Emergency Medicine, University of California, Davis

16Department of Emergency Medicine, David Geffen School of Medicine, University of California, Los Angeles Medical Center, Sylmar

17Department of Veterans Affairs, Hines, Illinois

18Department of Pediatrics, Washington University School of Medicine in St. Louis, Missouri

19Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, North Carolina

20Department of Veterans Affairs and University of Utah, Salt Lake City

21Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York

22Trivedi Consults, LLC, Berkeley, California

Evidence-based guidelines for implementation and measurement of antibiotic stewardship interventions in inpatient populations including long-term care were prepared by a multidisciplinary expert panel of the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America.

The panel included clinicians and investigators representing internal medicine, emergency medicine, microbiology, critical care, surgery, epidemiology, pharmacy, and adult and pediatric infectious diseases specialties.

These recommendations address the best approaches for antibiotic stewardship programs to influence the optimal use of antibiotics.

PDF

http://cid.oxfordjournals.org/content/62/10/e51.full.pdf

April 29, 2016 at 2:35 pm

Implementing an Antibiotic Stewardship Program – Guidelines by the IDSA and the Society for Healthcare Epidemiology of America

Clinical Infectious Diseases May 15, 2016 V.62 N.10 P.1197-1202

Executive Summary

Tamar F. Barlam, Sara E. Cosgrove, Lilian M. Abbo, Conan MacDougall, Audrey N. Schuetz, Edward J. Septimus, Arjun Srinivasan, Timothy H. Dellit, Yngve T. Falck-Ytter, Neil O. Fishman, Cindy W. Hamilton, Timothy C. Jenkins, Pamela A. Lipsett, Preeti N. Malani, Larissa S. May, Gregory J. Moran, Melinda M. Neuhauser, Jason G. Newland, Christopher A. Ohl, Matthew H. Samore, Susan K. Seo, and Kavita K. Trivedi

1Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts

2Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland

3Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida

4Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco

5Department of Medicine, Weill Cornell Medical Center/New York–Presbyterian Hospital, New York, New York

6Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Houston

7Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia

8Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle

9Department of Medicine, Case Western Reserve University and Veterans Affairs Medical Center, Cleveland, Ohio

10Department of Medicine, University of Pennsylvania Health System, Philadelphia

11Hamilton House, Virginia Beach, Virginia

12Division of Infectious Diseases, Denver Health, Denver, Colorado

13Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University Schools of Medicine and Nursing, Baltimore, Maryland

14Division of Infectious Diseases, University of Michigan Health System, Ann Arbor

15Department of Emergency Medicine, University of California, Davis

16Department of Emergency Medicine, David Geffen School of Medicine, University of California, Los Angeles Medical Center, Sylmar

17Department of Veterans Affairs, Hines, Illinois

18Department of Pediatrics, Washington University School of Medicine in St. Louis, Missouri

19Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, North Carolina

20Department of Veterans Affairs and University of Utah, Salt Lake City

21Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York

22Trivedi Consults, LLC, Berkeley, California

Evidence-based guidelines for implementation and measurement of antibiotic stewardship interventions in inpatient populations including long-term care were prepared by a multidisciplinary expert panel of the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America.

The panel included clinicians and investigators representing internal medicine, emergency medicine, microbiology, critical care, surgery, epidemiology, pharmacy, and adult and pediatric infectious diseases specialties.

These recommendations address the best approaches for antibiotic stewardship programs to influence the optimal use of antibiotics.

PDF

http://cid.oxfordjournals.org/content/62/10/1197.full.pdf

April 29, 2016 at 2:33 pm

First Report of cfr-Carrying Plasmids in the Pandemic Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Staphylococcal Cassette Chromosome mec Type IV Clone

Antimicrobial Agents and Chemotherapy May 2016 V.60  N.5 P.3007-3015

Anna C. Shore, Alexandros Lazaris, Peter M. Kinnevey, Orla M. Brennan, Gráinne I. Brennan, Brian O’Connell, Andrea T. Feßler, Stefan Schwarz, and David C. Coleman

aMicrobiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland

bNational MRSA Reference Laboratory, St. James’s Hospital, Dublin, Ireland

cDepartment of Clinical Microbiology, School of Medicine, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland

dInstitute of Farm Animal Genetics, Friedrich Loeffler Institut, Neustadt-Mariensee, Germany

Linezolid is often the drug of last resort for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins; cfr, encoding phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A (PhLOPSA) resistance; its homologue cfr(B); or optrA, conferring oxazolidinone and phenicol resistance.

Linezolid resistance is rare in S. aureus, and cfr is even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected to cfr PCR, PhLOPSA susceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling, spa typing, pulsed-field gel electrophoresis (PFGE), plasmid curing, and conjugative transfer.

Whole-genome sequencing was used for single-nucleotide variant (SNV) analysis, multilocus sequence typing, L protein mutation identification, cfr plasmid sequence analysis, and optrA and cfr(B) detection.

Isolates M12/0145 and M13/0401 exhibited linezolid MICs of 64 and 16 mg/liter, respectively, and harbored identical 23S rRNA and L22 mutations, but M12/0145 exhibited the mutation in 2/6 23S rRNA alleles, compared to 1/5 in M13/0401.

Both isolates were sequence type 22 MRSA staphylococcal cassette chromosome mec type IV (ST22-MRSA-IV)/spa type t032 isolates, harbored cfr, exhibited the PhLOPSA phenotype, and lacked optrA and cfr(B).

They differed by five PFGE bands and 603 SNVs. Isolate M12/0145 harbored cfr and fexA on a 41-kb conjugative pSCFS3-type plasmid, whereas M13/0401 harbored cfr and lsa(B) on a novel 27-kb plasmid.

This is the first report of cfr in the pandemic ST22-MRSA-IV clone. Different cfr plasmids and mutations associated with linezolid resistance in genotypically distinct ST22-MRSA-IV isolates highlight that prudent management of linezolid use is essential.

PDF

http://aac.asm.org/content/60/5/3007.full.pdf

April 28, 2016 at 8:23 am

Staphylococcus aureus resistentes a la meticilina portadores del gen mecC: ¿un problema emergente?

Enf Inf & Microb Clinica Mayo 2016 V.34 N.05 P.277-9

Editorial

Ana Vindel, Emilia Cercenado

a Servicio de Bacteriología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, España

b Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, España

c Servicio de Microbiología y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, España

Staphylococcus aureus (S. aureus) resistente a la meticilina –SARM– es un importante patógeno humano que causa una amplia variedad de infecciones que pueden ser leves, como algunas infecciones de piel y partes blandas, o graves, como bacteriemia, endocarditis, neumonía e infecciones de localización quirúrgica.

Además puede producir una colonización asintomática, lo que facilita su transmisión y diseminación. Desde su descripción inicial en 1959 y durante varias décadas, el SARM se había considerado un patógeno confinado al ámbito sanitario, pero a partir de la década de los noventa, se describe la emergencia de cepas de SARM responsables de infecciones aparentemente adquiridas en la comunidad.

Las cepas comunitarias pertenecían a clones diferentes a los implicados en las infecciones adquiridas en centros sanitarios, muchas de ellas producían la leucocidina de Panton-Valentine y eran más sensibles a los antibióticos antiestafilocócicos, si bien, actualmente estas diferencias se han difuminado y no son absolutas.

Por otra parte, en las últimas décadas se comunica la emergencia de SARM como un patógeno que también puede colonizar e infectar a un amplio rango de especies animales, tanto de granjas, como de compañía o salvajes.

Estas cepas, pertenecientes a otros linajes genéticos diferentes se conocen como SARM asociados al ganado1, 2. Las cepas de SAMR en animales no solo son importantes desde el punto de vista de la salud animal y desde la perspectiva económica sino que también pueden actuar como reservorio zoonótico, entrar en la cadena alimentaria y causar infecciones en humanos.

En todas estas cepas, la resistencia de S. aureus a la meticilina, se debe a la producción de una nueva proteína, la PBP2a, que presenta una baja afinidad por los betalactámicos. Esta proteína está codificada por el gen mecA….

PDF

http://apps.elsevier.es/watermark/ctl_servlet?_f=10&pident_articulo=90452006&pident_usuario=0&pcontactid=&pident_revista=28&ty=17&accion=L&origen=zonadelectura&web=www.elsevier.es&lan=es&fichero=28v34n05a90452006pdf001.pdf

April 28, 2016 at 8:21 am

Caracterización molecular de Staphylococcus aureus en personas relacionadas con una granja de ganado en España, con la detección de SARM-CC130-mecC: ¿un caso de zoonosis?

Enf Inf & Microb Clinica Mayo 2016 V.34 N.05 P.280-5

Daniel Benito, Paula Gómez, Carmen Aspiroz, Myriam Zarazaga, Carmen Lozano, Carmen Torres

a Área Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain

b Unidad de Microbiología. Hospital Royo Villanova, Zaragoza, Spain

Objetivo

Estudiar la presencia de S. aureus en muestras nasales y cutáneas de los miembros de una familia de granjeros, con distinto nivel de contacto con ganado, y caracterizar los aislados obtenidos.

Métodos

Se recogieron 3 muestras nasales (1 cada 6 meses) de los 11 miembros de la familia de granjeros (n = 31) y 9 muestras cutáneas de pequeñas lesiones de 5 de ellos, para aislamiento de S. aureus, tanto sensible (SASM) como resistente a meticilina (SARM). Se realizó la caracterización molecular de los aislados (spa- y multi-locus-sequence-typing) y se estudiaron sus fenotipos y genotipos de resistencia, y su contenido en genes de virulencia y del clúster de evasión-inmune-humano (IEC).

Resultados

Se obtuvieron 18 aislados de S. aureus (1 SARM y 17 SASM) en las 40 muestras estudiadas. De las personas examinadas, 9/11 fueron portadoras de S. aureus: 7/11 en muestras nasales y 4/5 en cutáneas. La cepa SARM fue aislada en una lesión cutánea de un granjero, portaba el gen mecC y se tipó como ST130-CC130-t843. En las 17 cepas SASM se detectaron 9 tipos de spa y 9 secuencias-tipo, adscritas a los complejos clonales CC2, CC30, CC45, CC121 y a los asociados con ganado CC9 y CC133. Seis cepas portaron los genes eta o tsst-1. Tres de las 18 cepas carecían de los genes del sistema de evasión inmune (IEC) (SARM-ST130, SASM-ST1333 y SASM-ST133), y el resto presentaron IEC-A o -B.

Conclusión

Se detectaron líneas genéticas de S. aureus asociadas a animales en la familia de granjeros, destacando la detección de SASM-CC133 y SARM-ST130-mecC.

PDF

http://apps.elsevier.es/watermark/ctl_servlet?_f=10&pident_articulo=90452007&pident_usuario=0&pcontactid=&pident_revista=28&ty=18&accion=L&origen=zonadelectura&web=www.elsevier.es&lan=en&fichero=28v34n05a90452007pdf001.pdf

 

April 28, 2016 at 8:18 am

Older Posts


Calendar

April 2016
M T W T F S S
« Mar   May »
 123
45678910
11121314151617
18192021222324
252627282930  

Posts by Month

Posts by Category